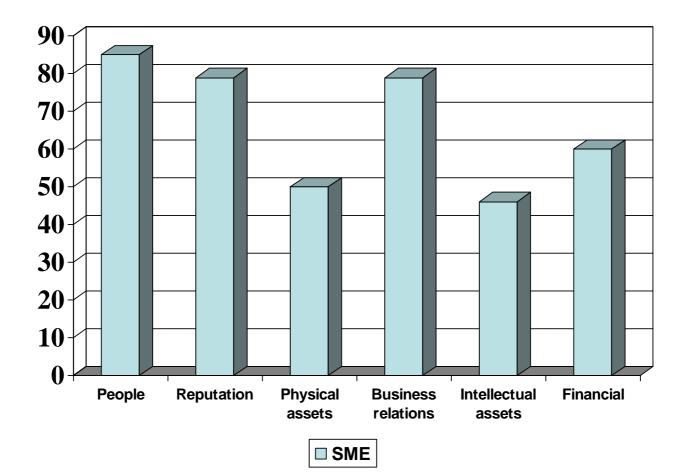


Security for "Seamless Global Connectivity and Services Anywhere, Anytime"

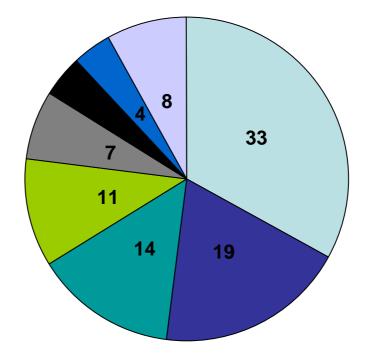
Prof. Madjid Merabti

Network Security Group School of Computing and Mathematical Sciences Liverpool John Moores University Byrom Street, Liverpool L3 3AF, UK. Email: M.Merabti@livjm.ac.uk


Information Security – A New Thing...?

- The need for information security thousands of years old the Caesar Code
- Rise in computing fed by information requirement
- 1960's ARPANET
- 1970's Security becomes an issue
- 1980's "UNIX OS System Security" (Grampp & Morris, 1984)
- 1990's WWW and the Internet, millions online
- 2000 and beyond mobile security

Security Breaches


• Which assets are important to UK business

Security Breaches

• The worst security breaches in the last year

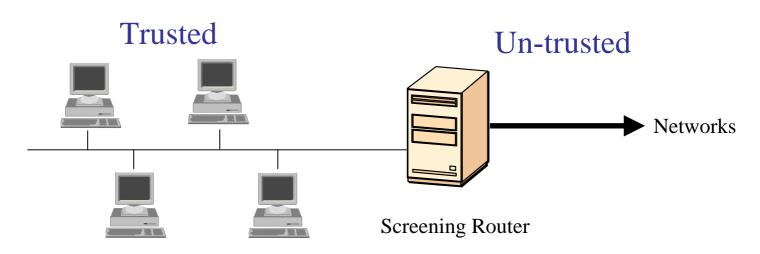
Virus infection
 Unauth access to conf data
 Systems failure/data diruption
 Hacking Web sites
 Staff misuse
 Fraud/theft
 File deletion
 Others

Source: DTI/PCW Information Security Breaches Survey, 2002.

The Perimeter Model

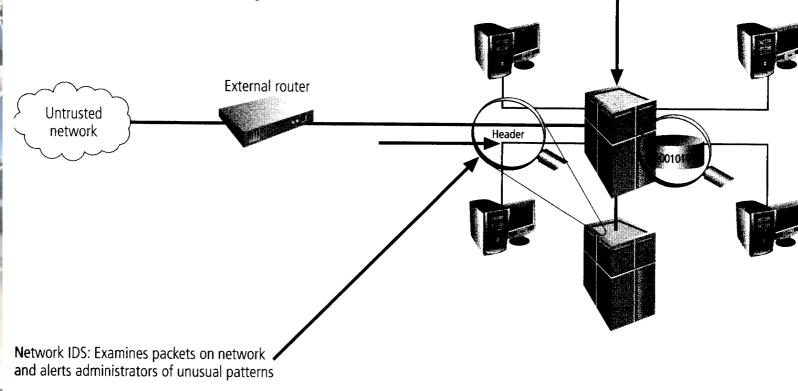
- Accepted model of
 network security
- Define a perimeter, then place defence mechanisms to protect that perimeter
- Building "castles"
- Set policies enforced by security technologies, e.g. firewalls and IDS

The Perimeter Model


- Firewalls: enforce security policies regarding network traffic
- IDS: detect misuse or unacceptable behaviour within a network

Firewalls

- Firewall is a process that filters traffic between trusted (inside) network and untrusted (outside) networks
- Purpose is to keep 'bad' things outside the perimeter
- 3 types of firewall (different complexity): screening router, proxy gateway, and guards



Intrusion Detection Systems

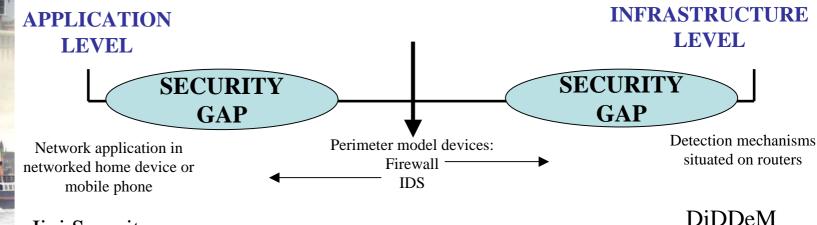
- Intrusion detection: "art" of detecting and responding to computer misuse
- Identifies individuals using a computer system without authorisation or are misusing their privileges
- Intrusion Detection Systems (IDS) detect violations of the security policy within the trusted domain
- Two main types of IDS
 - Host-based IDS
 - Network-based IDS

HIDS and NIDS

Host IDS: Examines the data in files stored on host and alerts systems administrators of changes

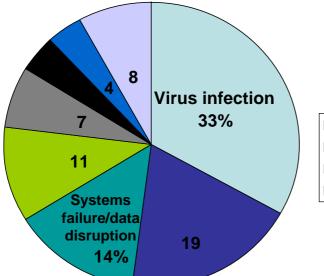
NIDS and Firewall Signatures

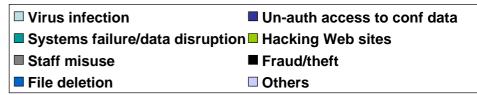
- Two types of signature: state-full and stateless
- State-full signature requires that state information is kept about the system being monitored
 - Code Red traffic upsurge
 - HIDS information for change management detection
 - Network traffic monitoring
- Stateless signature requires no state information about the system being monitored
 - IP Packet firewall header information
 - Code Red fixed byte sequence for HTTP request
 - Port 139 used in 'winnuke'


Current and Future Challenges

- Security in the future is going to be more complex
- Issues include:
 - Problems with the perimeter model worms and denial-of-service attacks
 - Move to ad hoc, mobile networking application-level security to WAN

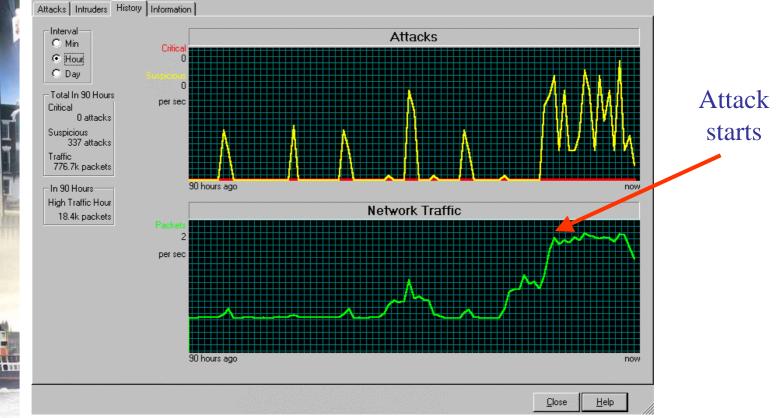
Scale Issues


- Move to IPMSA and Ubiquitous Computing (UC) means that many devices may connect
- Security required at all levels of network device, from UC application in networked fridge to routing infrastructure
- This scaling not addressed by current security models such as perimeter model



Perimeter Model Challenges

- Perimeter model is widely deployed by organisations as main defence
- False sense of security rely on KNOWN attacks with particular payloads that can be quickly identified
- Impact of worms and denial-of-service attacks demonstrate severe limitations – yet account for 47% of attacks


Perimeter Model Challenges – Worms

- Worms are malicious programs that move rapidly through networks and automate the infection process
- For example, Code Red pervasive network worm causing widespread damage in 2001
- Infected over 360,000 vulnerable IP addresses in just 12 hours despite widespread deployment of firewalls and IDS
- Sent HTTP GET request to vulnerable Microsoft machines running IIS Web servers
- New worms released since (MS Blaster, Slammer, etc.)
- Propagate very quickly Slammer worm in 2003 had an early doubling time of 8.5s

Perimeter Model Challenges – Worms

- Impact of Code Red Worm on a network severe
- Large upsurge in network traffic as worm is triggered and attempts to infect other vulnerable machines

Perimeter Model Challenges – Worms

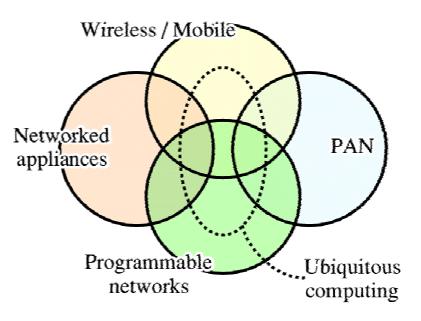
- Traditional defence against worms is Anti-Virus software
- Code Red and other worms move through a network too quickly for AV software to be effective
- Firewalls and IDSs (like AV software) rely on KNOWN signatures, but this approach is too slow when defending against worms
- Therefore, new approach required

Perimeter Model Challenges – Denial of Service

- Denial-of-Service (DoS) attacks prevent legitimate users from accessing data, systems, or resources
- Launched across networks or the Internet
- High-rate of data transfer leads to target paralysis
- Distributed Denial-of-Service (DDoS) attacks combine computers into attack networks to increase amount of data sent to the victim
- Easy to launch but difficult to defend against

Perimeter Model – a Solution

- Worms and denial-of-service attacks high upsurge in traffic to indicate an attack
- Use both state-full and stateless signatures
- We combine the two techniques to achieve fast and reliable detection of network worms and denial-of-service attacks:
 - Integrate detection system with congestion algorithm at the router to detect traffic upsurge
 - Apply fast string matching to suspicious traffic to verify the attack


Wireless Networks

- Past few years have seen world become increasingly mobile
- Physical cables severely restrict users' movements
- Advantages of mobile networking: mobility, flexibility in rapid network deployment, cost reduction in physical components, etc.
- From known network topologies (fixed networks) to chaotic network topologies (wireless)

Ubiquitous Computing

- Ubiquitous Computing lies at the natural convergence of
 - Personal Area Networks
 - Widespread networked appliances
 - High Bandwidth
 - Mobile Networks
 - Programmable and
 Active Networks

Ubiquitous Computing

- In such an environment we find the fluid movement of data throughout the network
- This includes both passive data and active executable code

Wireless Security Challenges

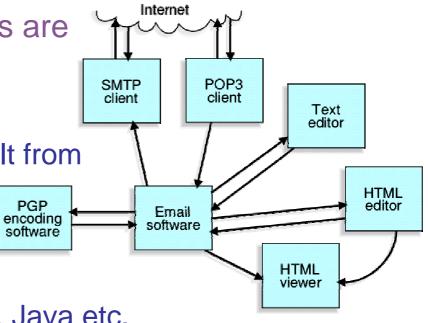
- No policy enforcement
- Restriction of access to networks authenticate all/restrict all?
- Deployment of perimeter devices in "perimeterfree world"
- The physical medium anyone can intercept data in transit
- Lack of expertise in establishing and using wireless networks
- Privacy
- Integrity
- e-Commerce

Wireless Security - Authentication

- Move towards Integrated Personal Mobility Services Architecture (IPMSA)
- Requirement to authenticate both the services we connect to (user view) and services we allow (administration view)
- WEP has shortcomings for authentication so move towards IETF's Extensible Authentication Protocol (EAP) for 802.1x
- However, EAP not without problems
 - Does not provide authenticity and integrity of any frames on the wireless network
 - Designed to authenticate the user assumption that users will only connect to the "right" network or services

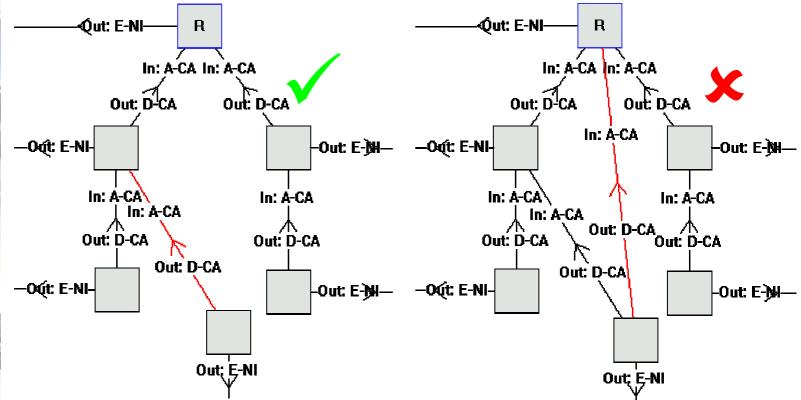
e-Commerce

- The Internet and WWW has a wide range of users (500 million + worldwide and growing)
- Two important issues for e-commerce:
 - Non-repudiation of receipt: a recipient of a message/doc cannot falsely deny having received the message/doc
 - Fair exchange: for a fair doc exchange (e.g. payment for e-goods) between two parties A and B, if A has got B's doc, then B has got/can get A's doc, and vice versa


Mobility

- The major downsides associated with executable mobility all relate to security issues
 - Currently the most common application for
 executable mobility in the user environment is that
 of viruses.
 - Executable mobility in the form of mobile agents
 present difficult privacy and QoS questions
 - In a mainstream environment, users are generally unwilling or unable to tackle all of the security issues

Wireless Security – a solution


- Component composition
- All modern applications are built from components
 - They allows complex applications to be built from simpler parts
 - It suits the top-down software procedural and OO paradigms of C, C++, Java etc.
 - Components can be reused, such as with OLE or DLLs
- In a Ubiquitous Computing environment, devices can be seen as components of a larger networked structure

Wireless Security – a solution

- Our system uses component patterns that can be determined dynamically
- For example, for CA we must distinguish between various tree structure patterns

Privacy

- Two different types of privacy in networks
 - Message/Content Privacy
 - E.g. I don't want you to read my email
 - Commonly termed "Confidentiality"
 - Behavioural/Contextual Privacy
 - E.g. I don't want you to know who I am talking to
 - "Untraceable Communications"
 - E.g. I don't want you to know my location
 - "Mobility Privacy"

Privacy – a Solution

- Mobile Network Privacy Architecture (MNPA)
- System Security
 - Prevention of Fraudulent Activity
 - Mutual Authentication of Users and Networks
 - Emphasis is on the 'network side'
- User Privacy
 - Privacy-enhanced Mobility Management
 - Privacy-enhanced Billing
 - Privacy-enhanced Routing
 - Emphasis on the 'user side'

Privacy – a Solution

- PRC : Privacy Routing Capability
 - End-to-end untraceable communications
- PTIA : Privacy Token Issuing Authority
 - Third party support for user activity, tokens allow pseudonymous access to Mobility and Billing
- Registration/Update
 - Mobility management maintaining privacy, and strong mutual authentication
- Billing
 - Services can be charged for but in an anonymous way, using the above components

Summary

- Increasing need for security to protect our information needs from wide range of threats
- Legal infrastructure not in place to help us so must take charge of our own security
- Current accepted practice is to employ perimeter model devices, but not without its problems
- The future is going to require a security re-think due to the challenges we face
- Security from the application level through to routing infrastructure is required
- For more information: http://www.cms.livjm.ac.uk